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Humans only recognize a few items in a scene at once and memorize three to seven items in the short
term. Such limitations can be mitigated using cognitive offloading (e.g., sticky notes, digital reminders). We
studied whether a gaze-enabled Augmented Reality (AR) system could facilitate cognitive offloading and
improve object retrieval performance. To this end, we developed NeighboAR, which detects objects in a user’s
surroundings and generates a graph that stores object proximity relationships and user’s gaze dwell times for
each object. In a controlled experiment, we asked N=17 participants to inspect randomly distributed objects
and later recall the position of a given target object. Our results show that displaying the target together with
the proximity object with the longest user gaze dwell time helps recalling the position of the target. Specifically,
NeighboAR significantly reduces the retrieval time by 33%, number of errors by 71%, and perceived workload
by 10%.
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computing systems and tools; • Computing methodologies→ Perception.
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1 INTRODUCTION
The human visual system processes an immense amount of signals each second [34, 39], and many
everyday activities such as object recognition or scene interpretation rely on the efficient processing
of these signals [12]. The cognitive processing effort depends on the visual complexity of the given
scene [31]; however, our perceptual and cognitive resources also have well-known limitations.
For example, we can only accurately perceive a small part of our visual field of view [64] and the
information we can actively hold in our memory is limited [2, 18, 48]. Because of such limitations,
people may experience disorientation or confusion when working in complex environments with
high degrees of visual clutter [3].
∗Corresponding Author: kenan.bektas@unisg.ch

Authors’ addresses: Aleksandar Slavuljica, aleksandar.slavuljica@student.unisg.ch, University of St. Gallen, St.Gallen,
Switzerland; Kenan Bektaş, kenan.bektas@unisg.ch, University of St. Gallen, St.Gallen, Switzerland; Jannis Strecker,
jannisrene.strecker@unisg.ch, University of St. Gallen, St.Gallen, Switzerland; Simon Mayer, simon.mayer@unisg.ch,
University of St. Gallen, St.Gallen, Switzerland.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2573-0142/2024/5-ART225
https://doi.org/10.1145/3655599

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. ETRA, Article 225. Publication date: May 2024.

HTTPS://ORCID.ORG/0009-0009-4717-3631
HTTPS://ORCID.ORG/0000-0003-2937-0542
HTTPS://ORCID.ORG/0000-0001-7607-8064
HTTPS://ORCID.ORG/0000-0001-6367-3454
https://doi.org/10.1145/3655599
https://orcid.org/0009-0009-4717-3631
https://orcid.org/0000-0003-2937-0542
https://orcid.org/0000-0001-7607-8064
https://orcid.org/0000-0001-6367-3454
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3655599


225:2 Aleksandar Slavuljica, Kenan Bektaş, Jannis Strecker, and Simon Mayer

Humans have developed a variety of strategies to cope with visually complex environments, for
instance by performing specific actions (e.g., different forms of highlighting relevant elements in a
cluttered environment) or by utilizing a variety of tools to make tasks mentally less demanding
(e.g., sticky notes). Similarly, and specifically for fast retrieval, techniques such as sorting objects
(e.g., on book shelves) or strategically placing or grouping objects according to their color, shape, or
meaning can help to alleviate mental workload [10, 26]. In these ways, cognition can be offloaded
onto our body or into the world to reduce information processing requirements of a task, and
actions that afford such a reduction are collectively referred to as cognitive offloading [61]. Hence,
also interactive visualizations [62] and strategic reminders [25] can store information outside of
our body and reduce the demand for mental representations. Alternatively, previous studies have
shown that fingers and eyes are being intuitively used for indexing the location of items and
supporting working memory [4, 16]. Relying heavily on external resources (e.g., navigational
aids and online tools) may however weaken cognitive abilities [22, 50, 75] or cause cognitive skill
degradation [73]. Thus, technologies that aim to augment cognitive abilities of humans [58] need
to better support the natural capabilities and resources of their users [79].

Augmented Reality (AR) devices, such as smartphones or head-mounted displays (HMDs), alter
users’ perception of the world with computer-generated overlays [3]. Lately, wearable AR devices
are being used for sensory, motoric, and cognitive augmentation of humans [58]; specifically, they
can be exploited to enable cognitive offloading [52, 67, 69]. We propose that the potential of AR
as a cognitive offloading tool is even greater when combined with eye tracking. For instance, eye
tracking permits taking into account the effective allocation of the user’s attention to objects in their
surroundings, in real-time. We explore this potential in the scope of a cognitive offloading solution
for efficient retrieval of objects. Our proposed system, NeighboAR, combines proximity-based
object grouping with information about overt user attention that we obtain from a gaze-enabled AR
system. This permits us to determine anchor objects that receive the most gaze dwell time. When
the user is tasked to retrieve an object later, NeighboAR uses associated nearby anchor object
as a cue. Our experiments show that this considerably facilitates object retrieval tasks. From the
perspective of cognitive offloading, our solution represents an approach that does not substitute a
user’s memory; rather, we use information about a user’s previous attention allocation to guide
their recall from memory. We have three main contributions:

• We present the NeighboAR concept for gaze-aware cognitive offloading. We discuss related
research on visual search and eye tracking, visual object detection, and the use of AR tech-
nology for cognitive offloading, and point out what distinguishes NeighboAR as a novel
approach to AR-based cognitive offloading.

• We introduce the NeighboAR prototype application. Our prototype is running on a Microsoft
HoloLens 2 (HL2) headset that is paired with an external server.

• We present the results of a user experiment of the NeighboAR prototype. Our results show
that significant improvements can be achieved in object retrieval performance and perceived
workload when users are provided assistance with NeighboAR.

To the best of our knowledge, we present the first attempt to combine gaze data and object detection
for cognitive offloading through an AR device, and to evaluate the benefits of this combination in
object retrieval.

2 RELATEDWORK
The conceptual foundation of NeighboAR is formed by related research on visual search and eye
tracking, visual object detection, and the use of AR technology for cognitive offloading. In the
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following, we discuss relevant research in these fields and point out what distinguishes NeighboAR
as a novel approach to AR-based cognitive offloading.

2.1 Visual Search and Eye Tracking
Visual search is vital for humans (and animals), as it constitutes an essential part of many of our
daily activities [12]. Thus, it is a topic of interest for researchers across diverse fields such as
ophthalmology [76], psychology [19], and human-computer interaction [38]. Visual search may
involve both overt and covert orientation of attention, where the former involves a deliberate
movement of the head and eyes [57]. Previous research identified main factors that guide attention
in visual search such as stimulus-, user-, and scene-driven attributes as well as the perceived value
of and previous interactions with the target objects [77]. According to image interpretation experts
(e.g., radiologists or analysts in satellite-based remote sensing settings), sufficient knowledge about
the target is the key to a successful search [19]. In previous studies, several predictive and contextual
cues were identified that reduce uncertainty of the target location where observers are informed
about the cue-target relationships [19]. Typically, these cues guide observer’s eye movements
to locations where the target objects are expected because of the scene context (i.e., semantic
consistency) or co-occurrence of cues and targets [19]. Castelhano and Heaven [14] show that
co-occurrence facilitates search even in the presence of semantic inconsistency. In this work, we ask
users to explore a scene while we measure their gaze dwell time on each object that they observed.
We hypothesize that these previous interactions and co-occurrence determine a strong cue-target
relationship that can inform users about the cue that they can intuitively recall when asked to
retrieve a target object.
In eye tracking research, visual search is a commonly studied activity that can offer insights

into the decision-making and problem-solving behavior of humans [19]. From eye-tracking data,
conclusions about human attention can be drawn which have a wide range of applications—from
the optimization of visual search interfaces [9] and product placements in vending machines [68]
to the creation of more user-friendly software interfaces [36] and even the assessment of the
complexity of declarative process models in software [1]. Previous research shows that users, when
tasked with object retrieval in cluttered work environments, rapidly move their eyes from one
object to another [24, 70]. Objects which have been gazed at for longer remain in a user’s memory
more accurately and for a longer time [17, 72], and in our work, we exploit this in the context of
cognitive offloading. Yet, the frequency of eye movements is proportional to the complexity of the
environment itself, meaning that users struggle with retaining object information when faced with
an environment with many objects [33].

Recently, Peacock et al. [55] studied the link between multiple eye tracking features and working
memory encoding. Their model shows that fixation duration is one of the predictive features for
a successful encoding. The participants of their experiments were asked to navigate through the
rooms of virtual apartments containing low clutter and find various targets (e.g., a table lamp) that
were marked with an arrow. Then, the participants were asked to verbally recall these targets or
their associated labels. However, in our experiment, participants freely viewed a set of physical
objects without knowing about the target. Right before the retrieval, we showed them the target
and an object that they gazed at most among other objects that were placed in the vicinity of the
target. Thus, we do not disclose any hint about the target or its location beforehand and encourage
users to rely on their own memory for retrieval.
In previous research, gaze data has also been used for reducing cognitive load. For instance,

Gazemarks [37] make use of a screen that displays visual reminders that take into account the
user’s last gaze position to help them reorient their attention after an attention switch or inter-
ruption. This leads to faster completion times for a resumed visual search task [37]. Similarly,
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GeoGazemarkers provide users with visual orientation cues on a small hand-held display [23].
Specifically, GeoGazemarkers support map users in orientation tasks by providing them assistance
based on where they have looked the most in a previous exploration phase. We propose that a
solution that takes into account object gaze dwell times in retrieval tasks may be an effective way to
facilitate cognitive offloading; hence, NeighboAR combines gaze tracking in an AR-based cognitive
offloading system, and we evaluate its effect on users’ object retrieval performance in a visually
cluttered physical environment. To permit NeighboAR to assign gaze dwell times to objects, it
needs to first detect relevant scene objects.

2.2 Visual Object Detection
The underlying mechanisms of human visual perception have inspired and informed the develop-
ment of computer vision solutions [12], prominently in the field of object detection [80]. Visual
object detection consists of locating objects of interest in an image and solving a classification
problem. The output of an object detection algorithm is typically a label indicating a type of object
and the location or bounding box of the object in a visual scene. Two-stage approaches, such as
Region-based Convolutional Neural Network (R-CNN) [27], extract region proposals of candidate
objects and compute features for each region through a large CNN in the first stage. Then, in
the second stage, each region is classified using a Support Vector Machine (SVM) with a linear
kernel. Although such two-stage approaches offer very good detection accuracy, they compromise
on speed [81]. One-stage algorithms, in contrast, extract region proposals and classify them at
the same time, thereby reducing computation time significantly. You Only Look Once (YOLO) [59]
is the first algorithm that proposed an architecture in which a single neural network predicts
bounding boxes and class probabilities at the same time. On top of YOLOv3 [60], which improves
the algorithm’s performance with small objects, and YOLOv4 [11], which provides an even faster
and more accurate algorithm, YOLOv7 [74] shows further improvements by requiring 75% fewer
parameters, 36% less computation time, while increasing average precision by 1.5% compared to
YOLOv4. In NeighboAR, we chose to make use of YOLOv7 due to its high processing speed and its
high level of flexibility and customizability. It also supports training for custom objects, which we
require for conducting our experiments on the cognitive offloading features of NeighboAR.

Significant use of visual object detection is seen in fields such as security, surveillance, robotics,
and autonomous vehicles [81]. Fang et al. [20], for instance, aimed to address the challenges of
identifying and managing safety hazards in construction sites, which are dynamic environments
with a high level of visual clutter. Their system can create contextual links between detected
objects, derive further meaning, and ultimately detect whether certain objects pose a safety hazard.
NeighboAR focuses instead on the proximity of objects to one another and combines this data with
object gaze dwell times. Specifically, gaze dwell times are used to filter the proximity-based graph
and thereby better assist users by taking into account which objects were attended most, hence,
perhaps will be remembered best.

AR-capable hardware such as smartphones or head-mounted displays (e.g., HL21, Apple Vision
Pro2, or Magic Leap 23) typically are equipped with RGB cameras, and therefore facilitate the
combination of AR and object detection. Regarding the allocation of concerns in the object detection
process across devices in an AR setting, Gammeter et al. [21] combine server-side object recognition
with client-side object tracking, where an Android-platform AR device tracks objects on the client
side and sends this data to the server-side component. The server-side component uses a deep

1https://www.microsoft.com/en-us/hololens. Last accessed February 10, 2024.
2https://www.apple.com/apple-vision-pro. Last accessed February 10, 2024.
3https://www.magicleap.com/magic-leap-2. Last accessed February 10, 2024.
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learning model to classify tracked objects. Gammeter et al. found that this separated setup is faster
and more accurate than performing all functions client-side. The HL2 that we use as part of the
NeighboAR system is similarly limited regarding processing power. Therefore, we separate the
NeighboAR application into HL2 and server functionalities.

2.3 Cognitive Offloading and AR
Cognitive offloading is a process in which we aid our mind in accomplishing its cognitive tasks by
offloading some of the mental demand to the external environment. Risko and Gilbert [61] explain
that the interactions of our body with the environment facilitate this process, often subconsciously
partaking in this act. However, this process is not limited only to the use of our own bodies. People
have historically used various tools for cognitive offloading, such as an abacus for calculations or
knots and recording devices such as quipus for memorization [50]. Scaife and Rogers [62] reviewed
the value of advances in graphical technologies for facilitating cognitive activities. Specifically,
they discuss to what extent the construction of internal mental representations can be supported
by external graphical representations such as diagrams, multimedia, or interactive virtual reality
applications. According to Scaife and Rogers [62], such external representations can reduce the
amount of cognitive effort (i.e., computational offloading) that is required in making inferences or
solving problems.

Our interactions with other hardware and software artifacts (e.g., smartphones or search engines)
can also serve for cognitive offloading [61]. With respect to the NeighboAR system, we specifically
consider AR applications for cognitive offloading. This can range from simple textual overlays
to highly interactive holographs, and use cases cover domains from entertainment to medicine
and more [54]. Today, AR can be experienced through various devices such as HMDs, tablets, or
smartphones. As such, most individuals in the world already have access to smartphone hardware
which they could use for cognitive offloading in conjunction with some form of AR [65]. As AR
devices are becoming affordable and widely available [30, 51, 56], we expect their potential with
respect to cognitive offloading to grow further. Eye tracking and AR are two technologies which
are often combined together, as AR head-mounted displays are frequently equipped with integrated
eye tracking capabilities [66]. Eye-tracking data has already been used in conjunction with AR
technology to help simplify various tasks, examples of which can be seen in AR surgical training
solutions [43], as well as in AR-enabled human and robot intention communication [15]. However,
these implementations do not measure cognitive offloading effects.

Strecker et al. [67] proposed an example cognitive offloading solution that combines Semantically
integrated Optical Character Recognition (OCR) with AR (SOCRAR) to provide an efficient and
user-friendly way to extract and interact with text in a user’s physical environment. On top of
the OCR, this system semantically lifts written text with respect to available ontologies, allowing
the user to interact with the text in meaningful ways, such as for currency conversion, additional
information search, etc. NeighboAR bears similarity to SOCRAR, as we likewise use an AR device
for cognitive offloading. However, while Strecker et al. [67] apply semantic OCR to the camera
feed of an HMD, our approach facilitates cognitive offloading with a visual object detector in
combination with eye tracking and spatial clustering, and focuses on object retrieval tasks. Tang
et al. [69] report that AR applications can be used to decrease cognitive demand during object
assembly tasks. The participants of their study received instructions using an AR system on how
to assemble an object. The findings of this study imply that AR guidance significantly improves
performance across various metrics in comparison to traditional instruction methods. Other than
decreasing errors and total assembly time, measurements of mental effort show that users benefited
from cognitive offloading. We likewise use AR assistance to improve performance and decrease
the cognitive demand of a task, but our system in addition uses eye tracking to measure user gaze
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dwell times for individual objects, and then makes use of this data for providing assistance in object
retrieval tasks.
AR applications often provide supplementary information to their user. For example, AR holo-

grams can be used to point towards potential locations of an object in a shared space to avoid
overwhelming the user. The size of the holograms can be adjusted based on how recent the regis-
tered locations were [52]. However, Tsurukawa et al. [71] employ AR to blur unnecessary peripheral
information, thus reducing the complexity and clutter in an observed area. As a consequence, cog-
nitive demand of the associated task is decreased. This is made possible by having a user define
specific regions of significance in a 3D space. Then, the underlying algorithm determines which
regions must become apparent to the user. Insignificant regions in the user’s field of view are
blurred to decrease visual clutter and, hence, cognitive demand. Our prototype does not use AR
to blur the user’s view. To assist users, NeighboAR provides them with task-relevant information
based on the collected object gaze dwell times and the spatial proximity of target objects. This
makes our system less obtrusive, while still enabling cognitive offloading.

AR has also been combined with eye tracking, albeit not in the context of supporting cognitive
offloading: Panetta et al. [53] proposed an automated solution to a cognitively demanding and
time-consuming manual annotation process (i.e., an essential part of eye-tracking data analysis).
Their proposed software architecture uses a wearable eye tracker to gather gaze-overlaid video
footage. This software then detects the specific object a user is focusing on and calculates the gaze
dwell time. Barz et al. [6] similarly implemented such a solution for the HL2 based on the Unity
game engine. Our system shares similarities with these approaches, as we likewise dynamically
detect different objects in the user’s field of view and calculate how long each object was gazed at.
However, we go beyond annotation and use the combination of object detection and eye tracking to
attempt to improve object retrieval performance of users in visually complex environments where
objects are presented in arbitrary semantic and spatial constellations.

3 NEIGHBOAR: COMBINING EYE TRACKING AND OBJECT DETECTION TO ENABLE
AR-BASED COGNITIVE OFFLOADING

Similar to the GeoGazemarkers [23], for the design of the NeighboAR system we assume that users
are able to better recall objects that they have previously looked at the most. Hence, we hypothesize
that dwell time can serve as a cue to determine what visual elements should be displayed to users to
support them in a given task. We focus on providing assistance to users for object retrieval tasks in
cluttered environments where NeighboAR facilitates cognitive offloading. Specifically, NeighboAR
achieves this by displaying an image of the target object (in AR) and supplementing this with the
image of another object that received the longest gaze dwell time by the user among the objects in
physical proximity to the target object.
NeighboAR combines AR, object detection, and eye tracking technologies. Our NeighboAR

prototype runs on two devices, an HL2 and an external server, as shown in Figure 1. The application
on the HL2 consists of four components: the Eye Tracking Handler, 3D Handler, UI Handler, and
HTTP Listener. We developed this application using the Unity Game Engine (2020.3.38) and the
Mixed Reality Toolkit (MRTK; v2.8.2). The external server runs the Object Detector with the HL2’s
camera feed as input, and contains the Administration component to manage the user experiment.

Object Detector. NeighboAR’s Object Detector is responsible for processing video frames coming
from the HL2’s front camera and detecting scene objects using YOLOv7 [74]. To prepare our
experiments with the NeighboAR system, we trained our custom YOLOv7 model on an NVIDIA
Tesla T4 GPU with 30 grocery products in the categories of chocolate, pasta, chips, and cereals.
The test over the validation set resulted in an overall precision of 99.2% and a recall of 99.8%. The
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Fig. 1. The NeighboAR prototype consists of six software components (Eye Tracking Handler, 3D Handler, UI
Handler, HTTP Listener, Object Detector, and Administration) and two hardware devices (HL2 and an external
server).

mean Average Precision (mAP) scores of 99.4% at an Intersection over Union (IoU) threshold of 0.5
and 97.6% across the range IoU=[0.5, 0.95] further indicate the robustness of our model. The Object
Detector accesses the video feed of the HL2 front camera through the Mixed Reality Device Portal
API [44] and processes the video frames with a frame rate of approximately 28 frames per second
on an NVIDIA GeForce GTX 1080M mobile graphics chip. Through our testing, we concluded that
the optimal confidence level for object detection is 0.88. Once an object is detected with at least
this confidence level, an HTTP request is sent to the HTTP Listener component running on the
HL2 that contains the object class and the 2D bounding box coordinates.

3D Handler. NeighboAR’s 3D Handler component has two main functions. First, it determines the
3D position of detected objects in real space. The coordinates of the 2D bounding box’s central point
(detected in and sent by the Object Detector) are converted into a ray, which is cast from the origin
of the HL2’s camera; we make use of the adjusted HL2 camera position provided by ARETT [35].
The point where this ray collides with the spatial mesh (i.e., a 3D geometrical representation of the
user’s environment created by MRTK’s Spatial Awareness System [46]) is used as the preliminary
3D position of the object. To minimize inaccuracies due to rapid head movements, the 3D Handler
repeats this process, comparing the new 3D position to its previously detected position. If the 3D
distance between these two consecutively detected positions is greater than 20 centimeters, both of
these positions are deleted. For a given object, if five preliminary positions are successfully created,
the average X, Y, and Z coordinates of these positions are used to determine the position of that
object’s 3D bounding box. The 3D bounding boxes have a fixed size which encloses all objects used
in the experimental procedure, without causing overlapping. During pilot testing of our prototype,
we found that these decisions allow the system to have an adequate detection performance. The
bounding boxes remain invisible to the user and are used for the second main function of the 3D
Handler—determining what objects a user is gazing at. Concretely, when the 3D Handler receives
eye-tracking data from the Eye Tracking Handler, the 3D bounding boxes are used to find which
object a user is gazing at. Given eye-tracking data, NeighboAR calculates a raycast from the user’s
eyes to their gaze target (i.e., the hit point with the 3D bounding box) to determine what object a
user is gazing at. Every time the 3D Handler determines that the user looks at an object, the object
name, 3D position, and gaze dwell time are sent to the Eye Tracking Handler .

Eye Tracking Handler. This component is responsible for handling and logging eye-tracking
data once the 3D Handler has created at least one 3D bounding box. The HL2’s eye tracker has
a sampling rate of around 30Hz with an accuracy of approximately 1.5-3° [47]. NeighboAR uses
MRTK’s in-built functions to retrieve eye-tracking data from the HL2’s eye tracker [45]. Whenever
it receives a new gaze sample from the HL2’s eye tracker, the Eye Tracking Handler sends it to
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the 3D Handler, which uses the sample to determine whether the user gazes at a particular object
(as described above). If this is true, the Eye Tracking Handler receives the object’s class name, 3D
position, and gaze dwell time from the 3D Handler and records this data.

UI Handler. In experimental object retrieval tasks, NeighboAR’s UI Handler component provides
users with visual cues and a button that is used in measuring the task duration. In the unassisted
mode, only the target object is displayed, while in the assisted mode, both the target object and the
object in proximity with the highest gaze dwell time are displayed (see Figure 2(e)). To determine
the object in proximity of the target and that was gazed at the longest, the UI Handler constructs a
proximity-based object grouping (i.e., the proximity graph) in the background, where the object
positions are determined with the help of the 3D Handler, as described earlier. Then, based on a
maximum distance threshold of 30 centimeters between the detected objects (i.e., adjacent products),
NeighboAR determines which objects are considered to be close to each other and thus clustered
together into groups. In our experimental design, this grouping corresponds to the distribution of
the objects in four separate cabinets. To determine the horizontal order of the clusters (i.e., which
cluster corresponds to which cabinet; see Figure 2(a)), the X -coordinates of the first object in each
cluster are sorted. Based on this ordering, the clusters are then labelled internally from the left-most
(C1) to the right-most (C4) clusters. The clustered objects are then enriched with the current user’s
dwell time for each object, as determined by the 3D Handler and Eye Tracking Handler. Within the
cluster of the target object, the object with the highest dwell time is then selected to be displayed
as the object in proximity.

HTTP Listener. NeighboAR’sHTTP Listener component enables the HL2 and the server to commu-
nicate. The HTTP Listener runs on the HL2 and regularly checks for any incoming HTTP requests
from the Object Detector and Administration components. After receiving an HTTP request, the
contents of the request are forwarded to either the 3D Handler or the UI Handler.

Administration. NeighboAR’s Administration component is responsible for sending the user
experiment-related commands to the HTTP Listener (see Section 4). Once received by the HTTP
Listener component, these commands are executed by the UI Handler. These commands are used
to set a target object during the experiment phase; to show, hide, reposition, or reset the display
of the target and proximity object; to enable or disable the logging of eye-tracking data; to toggle
the visibility of 3D bounding boxes for debugging; to start timers for data collection; to change
between assisted and unassisted modes; and to initiate the user eye-tracking calibration process.

4 NEIGHBOAR USER EXPERIMENT
We conducted a controlled user experiment to evaluate NeighboAR and to verify our hypothesis
that gaze dwell time together with physical proximity can serve as a cue to determine what visual
elements should be displayed to users to support them in a given task. In this user experiment,
participants were first tasked to remember the locations of 30 objects that were randomly arranged
in four cabinets. The participants were tasked to retrieve a target object from the cabinets. During
retrieval, either NeighboAR’s assisted mode or its unassisted mode were active (see Figure 2(e)). In
the unassisted mode, the users saw an image of the target object that they need to retrieve using
their own memory (or their mind map). In the assisted mode, they additionally saw an object whose
location is in proximity to the target object, and at which the user gazed the longest among all
physically proximate objects while remembering the object locations.
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Fig. 2. The system flow of NeighboAR. (a) A user is wearing a HL2 and is sitting in front of four cabinets.
(b) A screenshot taken from the output video of the Object Detector. The bounding boxes, class names and
probabilities are not visible to the participants. (c) Based on the 2D bounding boxes, 3D bounding boxes
are created invisibly to the user (see Section 3). (d) While the user inspects the objects, a proximity graph
is created in the background (see Section 3). In each of the cabinets the object with the highest dwell time
will be selected as an object in proximity if a target object of this cabinet is desired. (e) The left image shows
the unassisted mode where users are presented with a picture and name of the target object they are asked
to retrieve. The right image depicts the assisted mode where, additionally to the target object, the object in
proximity to the target object which received the longest gaze dwell time from the user is also displayed. In
both modes, the participant is expected to press the “Object retrieved!” button once they have found and
retrieved the target object. (f) After being exposed to either the assisted or unassisted mode, the user is tasked
to retrieve the target object from the right cabinet and press the button that is anchored to the wall.

4.1 Experiment Participants and Setup
Eighteen individuals (mean age 22 years; 4 females) participated in the user experiment and we
excluded the data of one male participant due to data incompleteness. When asked to evaluate their
familiarity with AR and Virtual Reality on a scale from 0 (not at all familiar) to 4 (very familiar),
participants on average stated that their familiarity was 1.41 and 1.82, respectively.
For the experiment setup, we used an HL2 and connected it to an external server (laptop) over

WiFi. We furthermore used four cabinets with shelves in which we placed 30 different grocery
products (see Figure 2). Products were selected based on their size and ease of placing and stacking
in a shelf, together with our requirement of stable object detection performance on our trained
YOLOv7 detector. In each trial, all products were placed on the top two shelves of the cabinets. In
this way, we ensured that the products were visible for the participants when they were sitting
on an office chair with castors. While set in a context with grocery products, the experimental
setup that we use is representative of a generic cluttered scene that includes multiple physical
objects with different features (e.g., color, material, size). Such settings occur frequently in scenarios
that range from industrial workshops (e.g., retrieval of a required machine tool) to private home
environments. Thus, our findings are likely to generalize to many specific scenarios with visually
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Fig. 3. A diagram showing the experimental procedure for one participant during the user experiment. Here,
the participant first performs two trials in the assisted condition, followed by two trials in the unassisted
condition. The order of conditions is randomized for every participant.

cluttered scenes. Our user experiment was exempt from a formal review by the ethics committee
of our institution.

4.2 Experimental Procedure
We defined a within-subject design procedure that takes about 60 minutes and includes multiple
predefined steps that we followed for all participants (see Figure 3). During pilot testing, we noticed
that while some of these steps must have a fixed duration (e.g., inspection of the cabinets and object
retrieval) others may require variable amount of time (e.g., eye calibration and familiarization of
the participants and rearranging objects in the cabinets). In order to fix the total duration of the
experiment and the amount of work across all participants we decided to have two trials for each
experimental condition (i.e., assisted and unassisted), and thus four trials in total.
Before the start of the experiment, each participant read a general information sheet, thus

was informed about the purpose of the experiment, as well as the tasks that are part of it. Each
participant subsequently signed a consent form that informs them about how their data would be
used and that they could withdraw their consent at any time and without any penalties. Participants
confirmed they do not have any medical conditions (e.g., simulator sickness and visual disorders)
which could affect them during the experiment. Before the first trial, each participant was assigned
to one of the experimental conditions. We randomized the order of the conditions among the
participants to avoid potential biases that would affect the results. The participant was then briefed
on the experimental setup, put on the HL2 and started the in-built eye-calibration procedure. Each
participant was assisted in placing and adjusting the HL2 on their head to avoid obstructing the
visibility of virtual and physical content and causing discomfort to the user. To prevent any height
biases which could systematically favor products on one of the shelves, the participant sat on a
height-adjustable office chair with omnidirectional castors and the chair was adjusted so that the
participant’s eye level is at a comfortable position to perceive the two top-most shelves of the
four cabinets. Finally, each participant was given the chance to familiarize themselves with the
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products used in the experiment, so as to mitigate potential biases due to preexisting familiarity
with products. Next, the participant was instructed to face a blank wall opposite of the cabinets
while the products were placed into the four cabinets by the experimenter. The participant was
then given two minutes, instructed to turn around and inspect all cabinets and to try to remember
the locations of all products. Every 30 seconds, the HL2 played a bell sound to signify that the
participant should move to the next cabinet. During inspection, participants were free to choose
the order of inspection of the cabinets. In both assisted and unassisted conditions, NeighboAR
generated a proximity-based graph of the objects during the inspection phase. It also tracked the
participant eye movements while they inspect the cabinet to assess which object was gazed at
for how long. The unassisted trials could have been performed without the HL2 by showing
participants the target object using a printout. However, to avoid confounding effects from the
hardware (e.g., physical demand or restrictions in peripheral vision), participants wore the HL2 in
both experimental conditions.

After inspecting all cabinets, the participant was asked to face the wall opposite of the cabinets.
In the unassisted condition, the NeighboAR application then displayed a picture of the target object
along with the object’s name (see Figure 2(e)). In the assisted condition, the NeighboAR application
additionally displayed the object with longest gaze dwell time among all objects in the target
object’s proximity (see Figure 2(e)). The participant was given five seconds to recall which cabinet
they believe contains the target object without turning around. After these five seconds, a bell sound
played and NeighboAR started a timer to measure the participant’s retrieval time. The participant
now turned around and attempted to retrieve the object. To do this, they needed to approach the
correct cabinet and take the object. Then they needed to return to their starting position and press
a confirmation button that was displayed in the NeighboAR application (see Figure 2(e)) which
stops the search timer. Note that both the target object and the confirmation button are spatially
anchored to the wall shown in Figure 2(a). During each trial, the participant’s number of errors
was measured. Here, errors refer to the number of times that a participant stopped moving their
chair and started inspecting the contents of the cabinet where the target object was not present.
After completion, the trial was repeated with reshuffled object positions to prevent learning effects.
Afterwards, the NASA Task Load Index (TLX) questionnaire [32] was answered by the participant
on a 10-point Likert scale. Then, the trial condition (assisted/unassisted) was changed and all
steps were repeated in two more trials. After a participant has completed all trials, they completed
the System Usability Scale (SUS) questionnaire [13] and answered the additional question: “How
useful was the displayed proximity object for finding the goal object?”. Finally, each participant
was debriefed and compensated for their time with 25 CHF per hour that our institution pays for
participation in user experiments.

4.3 Hypotheses and Variables
In this user experiment, we tested three hypotheses. Our first null hypothesis (𝐻1) states that
retrieval times during unassisted trials are not significantly longer than during assisted trials. To test
𝐻1, we measured the retrieval time in seconds that is averaged across all participants and trials.
Our second null hypothesis (𝐻2) states that the number of errors made during unassisted trials is not
significantly larger than during assisted trials. To test 𝐻2, we measured the average number of errors
made during the object retrieval task across all participants and trials. Our third null hypothesis
(𝐻3) states that perceived workload during unassisted trials is not significantly larger than during
assisted trials. To test 𝐻3, we measured the perceived workload complexity with the NASA TLX score
that is averaged per condition. The independent variable of our user experiment is the mode of
assistance provided in NeighboAR (unassisted vs. assisted).
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(a) Mean Object Retrieval
Times

(b) Mean Number of Errors (c) Mean NASA TLX Scores

Fig. 4. Three box plots showing the results for different operation modes (unassisted or assisted) of the
NeighboAR system.

5 RESULTS
In this section, we present the results of our user experiment and compare the differences in user
performance and workload for the unassisted and assisted conditions (see Figure 2(e)). In addition,
we present our findings about the system usability and perceived usefulness of NeighboAR.

Retrieval Speed (𝐻1). To test 𝐻1, we compared the participants’ retrieval time between the two
conditions (unassisted and assisted), as shown in Figure 4(a). In the unassisted condition, the
participants’ mean object retrieval time is 19.38𝑠 (𝜎 = 9.6), while it is 13.03𝑠 in the assisted condition
(𝜎 = 5.37). These two conditions are dependent and not all data follows a normal distribution
according to the Shapiro-Wilk (SW) test (unassisted: 𝑆𝑊 = 0.8, 𝑝 = 0.002; assisted: 𝑆𝑊 = 0.915,
𝑝 = 0.123). As such, the Student’s t-test cannot be used for statistical interference, due to the
violation of the assumption of independence, as well as the assumption of normality. According
to Scheff, equivalent non-parametric statistical interference methods can be used, if some of the
aforementioned assumptions are violated [63]. Accordingly, Scheff suggests using the Wilcoxon
signed-rank test. The results show that in the assisted condition, the participants needed significantly
less time than in the unassisted condition (𝑊 = 18.0, 𝑝 = 0.002, 𝑟 = 0.532, 𝛼 = 0.05) and that we
may hence reject 𝐻1.

Number of Errors (𝐻2). Across all participants, the mean number of errors in the unassisted
condition was 1 (𝜎 = 0.98) while in the assisted condition it was 0.29 (𝜎 = 0.77), as seen in
Figure 4(b). We again used the Wilcoxon signed-rank test, because the data was not normally
distributed according to the Shapiro-Wilk test (unassisted: 𝑆𝑊 = 0.85, 𝑝 = 0.011; assisted: 𝑆𝑊 = 0.45,
𝑝 < 0.001). The results show that the participants made significantly fewer errors in the assisted
condition than in the unassisted condition (𝑊 = 14.0, 𝑝 = 0.024, 𝑟 = 0.388, 𝛼 = 0.05), and that we
may hence reject 𝐻2.

Perceived Workload (𝐻3). We used the NASA TLX questionnaire to measure participants’ per-
ceived workload. As this questionnaire consists of rating scales on a 10-point Likert scale, the data
itself is ordinal in nature. However, Scheff explains that non-parametric statistical interference
models can be used even with ordinal data, given that the data itself is first transformed into a
ranked system [63]. In the unassisted condition, the average workload is rated as 4.79 (𝜎 = 1.33),
and in the assisted condition as 4.33 (𝜎 = 1.41). The results of Wilcoxon signed-rank test show that
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perceived workload for the assisted condition is significantly lower than the unassisted condition
(𝑊 = 25.5, 𝑝 = 0.025, 𝑟 = 0.385, 𝛼 = 0.05), and we may hence reject 𝐻3.

System Usability and Usefulness. The NeighboAR system received an average SUS score of 71.18
(𝜎 = 18.14). According to Bangor et al. [5] this score is in the acceptable part (70 to 100 on a scale
from 0 to 100) of the Acceptability Range and is classified as GOOD (between OK and EXCELLENT ).
Participants rated the assistance provided by NeighboAR as useful for the object retrieval (on
average 3, 𝜎 = 0.87, on a scale from “0: Not useful at all” to “4: Very useful”).

6 DISCUSSION
6.1 The Effect of NeighboAR on User Performance, Workload, and Comfort
The results depicted in Figure 4 demonstrate decreasing retrieval times, number of errors, and
perceived workload when participants use NeighboAR in the assisted mode. Additionally, our statis-
tical analysis show that the differences between assisted and unassisted conditions are statistically
significant, thus we could reject all three null hypotheses. Our findings are consistent with previous
work: Informing individuals about their previous gaze-based interactions within an environment (e.g.,
a map interface [23] or a virtual apartment [55]) can be used to provide them with cues that allows
them to efficiently use their cognitive resources and reduce their workload.

Regarding our experimental design, it is worth noting that the participants reported about their
workload after performing two trials per condition. Due to the time that we needed before each
trial to redecorate the products, participants could have forgotten some details of how they felt
during their first trial. The results hence include a training effect. However, this does not undermine
our results, because the procedure was the same for all trials. In addition, the mandatory five-
second thinking period before answering where the target object is placed could be obscuring
our understanding of participant performance. In the unassisted condition, it is possible that some
individuals would need all five seconds of thinking, but in the assisted condition, they could answer
much faster. Three participants noted that the assisted condition caused some confusion, as they
mixed up the target object with the proximity object in one of the trials. We have only sporadic
oral feedback from the participants about these cases, but they might contribute to higher variance
in assisted retrieval times and NASA TLX scores. Another limitation was our choice of objects
in the experiment. Even though most objects were similar in packaging, some objects had more
discernible features and thus higher visual saliency. This could understandably make it significantly
easier to retrieve certain objects; however, this does not impact the expressivity of our results,
because the target was randomly selected among 30 other objects.

The current version of NeighboAR was developed with an unobtrusive approach in mind. Our
intention was to filter task-specific information in the background (i.e., on the graph), and to provide
users with cues without cluttering their visual field. Further, our current implementation requires
minimal interaction with the AR content, which makes it less challenging to train users, even if
they had no previous experience with AR. As such, we could avoid causing discomfort or confusion
resulting from unfamiliarity with AR systems. In addition, the SUS score of NeighboAR is relatively
high for a research prototype, which is worthy of consideration as almost none of our participants
worked with AR systems before. Thus, even when faced with a completely new technology, most
participants deemed that it was sufficiently usable, in addition to significantly increasing their
object retrieval performance.

6.2 Limitations, Future Applications, and Implications
Our current solution detects users’ previous interactions with spatially co-located objects only from
their gaze dwell time. NeighboAR can be extended with predictive models that can incorporate a
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larger feature set of gaze dynamics. Then these models can be integrated into an AR system, as
previously shown by others for detecting working memory encodings [55] or human activities [8],
that can provide users with gaze-contingent assistance in real-time. This kind of assistance can
potentially be beneficial for individuals with memory deficits, those who practice multitasking or
must work in high cognitive workload conditions.

The current prototype works under the assumption that the position of objects will not change
after their detection. In the future, NeighboAR can be improved to support dynamic object track-
ing [42], whichwould expand the number of use cases where the prototype can be suitably employed.
Furthermore, as this is not required for demonstrating the capabilities of the NeighboAR prototype
in our experiments, it does not have an interactive user interface. Such an interface could be added,
for instance to permit users to communicate to the system what objects they are currently looking
for. Another extension of the prototype could allow a network of users to collaboratively build
consistent proximity-based object groups and create shared interactive experiences. For example,
when a user sees an object, its 3D position can be logged, as we described, and also simultaneously
shared with selected users on the network. This would allow the system to automatically build
object groupings and track object positions using several HMDs worn by different users (e.g., in
[52]). As such, this implementation would allow the system to assist a user in retrieving objects
which the user did not observe. This could result in improvements in (collaborative) retrieval tasks
which could be particularly useful in large and complex environments such as shared workspaces
or warehouses, where the chance of not observing all relevant objects is higher. Expanding Neigh-
boAR’s functionality to accommodate these extensions seems plausible, as existing AR headsets
already support 3D object position tracking and wireless communication.

We argue that NeighboAR can enable efficient object retrieval and serves as a tool for cognitive
offloading. However, our current findings rely on a user experiment that was executed in controlled
experimental conditions and with limited number of participants and trials. We need evidence from
followup studies that explore the longitudinal effects of NeighboAR on the cognitive abilities of
diverse user groups and preferably in their daily social and professional routines. To enable other
researchers to build on our work, we make the source code of our system openly available 4.

6.3 Privacy and Ethics Statement
In general, the usage of eye tracking systems and collection of eye-tracking data raise privacy-
related concerns because sensitive insights about individuals (e.g., their personal preferences or
mental condition) can be captured from their eye movements [40]. In modern gaze-enabled AR
headsets, eye-tracking data can be further combined with other spatio-temporal (e.g., audio, visual,
or biometric) recordings which can be used to predict (and extrapolate) more intimate details about
the users and their personal life. Thus, the increasing availability of these technologies can be
beneficial in addressing various problems of individuals or larger groups and, at the same time, they
can be used for manipulative and harmful purposes [49]. Thus, features such as those we present
in the NeighboAR approach and prototype should only be enabled after obtaining informed and
deliberate consent from the user. Users should also be provided with the means to specify when
and how the system will collect, store, and use their data [28, 41, 78]. As a technical mitigation
measure, we suggest that eye-tracking data should be kept in personal data stores (e.g., in [7, 29])
which enable users to exert fine-grained control—for raw eye-tracking data as well as derived
information—about what data is shared with third parties and what remains private.

4https://github.com/Interactions-HSG/NeighboAR
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7 CONCLUSION
Object retrieval tasks that we frequently encounter in our personal and professional lives can be
cognitively demanding especially in cluttered environments. To address this issue, we presented
NeighboAR: a novel cognitive offloading solution that combines eye tracking and object detection
through an AR device. We implemented a prototype and evaluated its benefits to support object
retrieval tasks. Instead of directly pointing at the location of a target object that is detected among
many other objects, NeighboAR provides its user with a cue that is informed by the previous
allocation of user attention, which we measure through eye gaze. Specifically, in its assisted mode,
NeighboAR displays the target together with an object that is co-located with the target and received
the longest gaze dwell time by the user in the past. We showed that NeighboAR improves object
retrieval performance and reduces the perceived workload while supporting rather than replacing
a user’s memory capabilities. This method of cognitive offloading can be potentially beneficial for
individuals with memory deficits or it can be used for assisting those who work in highly cluttered
and cognitively demanding environments.
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